
Church-Rosser in Morphogram-
matics
Lambda calculus application of kenomic and morphic 
abstractions 

Rudolf Kaehr Dr.phil „

«

Copyright ThinkArt Lab ISSN 2041-4358
 

Abstract
Morphogrammatics  is  not  presuming  a  multitude  of  contextures  but  is  creating  a  poly-
verse  of  contextures  in  each  situation  of  a  realization  of  an  operation.  This  continues
studies  proposed  with  “Notes  on  semi-Thue  Systems  in  a  Context  of  Morphogrammat-
ics".

1. Further mimicry: Reduction theorems

1.1. Iteration vs. accretion
1.1.1. Motivation
"If term X can be reduced to both Y and Z, then there must be a further term V (possibly equal 
to either Y or Z) to which both Y and Z can be reduced."

Kenomic inversion
"If there are two morphogrammatically equivalent but semiotically different terms t1 and t2, t1 

=MG
 t2, and t1 ≠sem t2, then two separated terms t1 and t2 can be produced from both t1 and 

t2, which then produce a prior term t0  which can be produced from both t1 and t2."

Two representions, one solution
l X, Y, Z:
CONS(((XY),Z):

CONS(XY), Z) ((ab), a).

cons JJabN, aN = JabaN JabbN JabcN.

JabaN ≠ MG JabbN ≠ MG JabcN.

Many representations, one solution.



JabaN

ˇ

JabbN

ˇ

JabcN

cons JJabN, aN

Deconstruction, step one
Church-Rosser: two representation, one solution.
Morphogrammatics: two solutions, one representation.

Example- I
Church-Rosser : Two representation, t 1, t 2,
of a formula t 0 with one solution t 3 = t 1 = t 2.

t 0öt1and t 0öt2 imply t 1= ID t 2.

JbrN : Jl v tN s t BvísF

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN u JJlv.vvN uN Jlw.wwN JuuN : t 1, t 2 JbrN

é ã

uu JuuN = LC uu JuuN : t 3, t 1 = t 2.

Example- II
Morphogrammatics : Two different solutions, t 1 ,
t 2 t 1 ≠ SEM t 2, of a formula t 0 with one representation t 0.

t 0ö ...öt1and t 0ö ...öt2 imply Jt 1≠ ID t 2 t 1= KENO t 2N.

Jbr kenoN : Jl v tN s t Bvís 1F ... t Bvís nF

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN x JJlv.vvN xN Jlw.wwN JuuN : t 1, t 2, u = MG x

é ã

xx JxxN = MG uu JuuN : t 1 ≠ SEM t 2, t 1 = MG t 2.

Example-I II

Jt 1≠ ID t 2 t 1= KENO t 2N imply t 1ö ...öt01, t 2ö ...öt02., with t 01 = SEM t 02.

:

2   Author Name



Jt 1≠ ID t 2 t 1= KENO t 2N imply t 1ö ...öt01, t 2ö ...öt02., with t 01 = SEM t 02.

Jbr revN : t Bvís 1F ... t Bvís nF Jl v tN s

xx JxxN = MG uu JuuN : t 1 ≠ SEM t 2, t 1 = MG t 2.

ã é

Jlv.vvN x JJlv.vvN xN Jlw.wwN JuuN : t 1, t 2 ; u = MG x

é ã

Jlw.wwN JJlv.vvN uN : syntactically : t 01 = SYNT t 02 .

b-equivalence 

"Finally, b-equivalence is obtained by allowing reduction steps as well as inverse 
reduction steps, i.e., by making öb  symmetric:

Definition. We write M =b M’ if M can be transformed into M’ by zero or more reduc-

tion steps and/or inverse reduction steps. 
Formally, =b is defined to be the reflexive symmetric transitive closure of öb, i.e., 

the smallest equivalence relation containing öb.” (Selinger, p.17)

Nonetheless, the b-equivalence is based on the principle “One representation, one solu-
tion” and is therefore not to be confused with the given examples of the concept “Many 
solutions, one representation".

1.1.2. Polycontexturality and morphogrammatics
What the difference to the polycontextural approach as it was presented under the motto 
“Lambda calculi in polycontextural situations"? As the title suggests polycontexturality of 
situations is presupposed to place, i.e. distribute and mediate, lambda calculi. The study of 
such distributed lambda calculi was partly elaborated and has delivered some interesting 
results. Nevertheless, polycontexturality wasn’t generated by such dissemination of lambda 
calculi but presupposed.
Polycontexturality has its own calculus of generating distributed contextures in a polyverse.

On the other hand, a justification for the choice of polycontexturality isn’t necessary. The 
reason is simple, there is no generally acceptable reason to opt for the classical monocontextu-
ral approach. The fact that monocontexturality is world-wide accepted and technically in many 
respects highly successful doesn’t mean that this monocontextural approach has found a a 
secure foundation. Its legitimacy is pragmatically, its limits more and more obvious.
Therefore, an option for polycontexturality isn’t less arbitrary than an option for the estab-
lished monocontexturality.

In contrast to the contextural decision, keno- and morphogrammatic constructions as sketched 
with the paper “Notes on semi-Thue Systems in a Context of Morphogrammatics” are not 
presupposing but generating their polycontexturality on the base of their own operations. Each 
repetition and iteration has per se its retrograde recursive double role as iteration and as 
accretion.

Morphogrammatics is not presuming a multitude of contextures but is creating a polyverse of 
contextures in each situation of a realization of an operation. 

Article Title  3



What the difference to the polycontextural approach as it was presented under the motto 
“Lambda calculi in polycontextural situations"? As the title suggests polycontexturality of 
situations is presupposed to place, i.e. distribute and mediate, lambda calculi. The study of 
such distributed lambda calculi was partly elaborated and has delivered some interesting 
results. Nevertheless, polycontexturality wasn’t generated by such dissemination of lambda 
calculi but presupposed.
Polycontexturality has its own calculus of generating distributed contextures in a polyverse.

On the other hand, a justification for the choice of polycontexturality isn’t necessary. The 
reason is simple, there is no generally acceptable reason to opt for the classical monocontextu-
ral approach. The fact that monocontexturality is world-wide accepted and technically in many 
respects highly successful doesn’t mean that this monocontextural approach has found a a 
secure foundation. Its legitimacy is pragmatically, its limits more and more obvious.
Therefore, an option for polycontexturality isn’t less arbitrary than an option for the estab-
lished monocontexturality.

In contrast to the contextural decision, keno- and morphogrammatic constructions as sketched 
with the paper “Notes on semi-Thue Systems in a Context of Morphogrammatics” are not 
presupposing but generating their polycontexturality on the base of their own operations. Each 
repetition and iteration has per se its retrograde recursive double role as iteration and as 
accretion.

Morphogrammatics is not presuming a multitude of contextures but is creating a polyverse of 
contextures in each situation of a realization of an operation. 

1.1.3. Modi of substitution
Definition. The (capture-avoiding) substitution of N for free occurrences of x in M, in symbols 
M[N/x], is defined as follows:

xBNíxF ª N,

yBNíxF ª y, if x ≠ y,

JM PN BNíxF ª JM BNíxFN JP BNíxFN,

Jlx.MN BNíxF ª lx.M,

Jly.MN BNíxF ª ly.JM BNíxFN,

if x ≠ y and y – FV JNN, FV : free variable

Jly.MN BNíxF ª ly '.JM :yíy '>BNíxFN, if x ≠ y, y œ FV JNN, and y’ fresh.

This opens up the possibility to introduce different kinds of abstractions involved in the process 
of substitution. The general table of different kinds of substitutions as they are introduced for 
morphogrammatic semi-Thue systems shall be applied.
http://memristors.memristics.com/semi-Thue/Notes%20on%20semi-Thue%20systems.pdf

Example

JM PN BNíx 1F ª JM BNíx 2FN JP BNíx 3FN or

JM PN Bx 1 := NF ª JM Bx 2 := NFN JP Bx 3 := NFN :

Identity (equality)
ID = (x1 ª x2 ª x3)

Equality
w œ C ID

u fi
ID

v

w 1u fi
ID

w 2v , uw 3 fi
ID

vw 4

Table  u fl
id

 v 

B

Id wx xw w 12 w 34

MG + + + +

SEM + + + +

F 

Equivalence
(x1 =keno x2 =keno x3)

4   Author Name

http://memristors.memristics.com/semi-Thue/Notes%20on%20semi-Thue%20systems.pdf


Equivalence
(x1 =keno x2 =keno x3)

Table  u fl
keno

 v 

B

Equ wx xw w 12 w 34 w 13 w 24

MG + + + + + +

SEM - - - - + +

F

Similarity
(x1 =sim x2 =sim x3)

Table u fl
SIM

 v 

B

u fi
SIM

v wx xw w 12 w 34 w 13 w 24

MG + + + + + +

SEM - - - - - -

[ + + . . . .

F

Bisimilarity
(x1 =bis x2 =bis x3)

Table: u î
BIS

 v 

B

u î
BIS

v wx xw w 12 w 34 w 13 w 24

MG - - - - + +
SEM - - - - - -
[ + + . . . .

length - - - - + +

F

Table of the modi of substitution for different types of lambda calculi LC.

MG N x N x N x N x N x

= MG + + + + + + - - +- +-
= sem + + + - - - - - - -
[ + + + + + + - - Ñ Ñ

type id Ñ eq Ñ sim Ñ bisim Ñ metamorph Ñ

LC CLC Ñ kenoLC Ñ morphLC Ñ bisLC Ñ metamLC Ñ

Article Title  5



Different version
"Reversing beta-reduction produces beta-abstraction rule." 
Kenneth Slonneger, Formal syntax and semantics for programming languages, §5, p.149, 1995

Syntax of Lambda Expressions
1. t = x, x œ Var
2 . t = l t x M x and M are expressions

3. t = JMNN, M, N expressions

b - Reduction Rules

JbrN Jl v tN s t BvísF

b. < s, t > 0 s
c. < s, t > 1 t.

Jpo1N t 1ö t 1

Jpo2N t 1ö t 2 and t 2ö t 3 then t 1ö t 3

Ja1N if t 1ö t 2 then Js t 1Nö Js t 2N

Ja2N if t 1ö t 2 then Jt 1 sNö Jt 2 sN

6   Author Name



Ja3N if t 1ö t 2 then Jl v t 1Nö Jl v t 2N

JrpsN if t 1ö t 2 then if t 1 = t 2

2. Church-Rosser reductions for morphogrammatics

2.1. Lambda Calculus modus=ID
"In fact, when a form contains more than one lambda that can be reduced, it does not 
matter which one is reduced first, the result will be the same. This is known as the 
Church-Rosser property, or, informally, as the diamond property.” (Barker)
t 0ö ...öt1and t 0ö ...öt2 imply t 1= ID t 2.

Terms = :u, v, w>

JbrN : Jl v tN s t BvísF ID

Identity , Equality
u idv :
u MGv, w 1u SEMw 2v and uw 3 SEMvw 4and

w 1= semw 2= semw 3= semw 4. : C++++G

Example- I

Jlx.x + xN Jly.y + yN 1N : t 0

ã é

Jlx.x + xN J1 + 1N, JJly.y + yN, 1N + JJly.y + yN, 1N : JbrN, Ja1N; JbrN : t 1, t 2

J1 + 1N + JJly.y + yN, 1N : JbrN, Ja2N : t 2

é ã

J1 + 1N + J1 + 1N : JbrN; Ja1N, JbrN : t 1 = t 2.

General remarks to the modi of abstractions
Obviously this says that both branches are terminal and that both terminal results of the 
branches are semantically equal, therefore the branches are meeting in a common end. 
This corresponds to the graphematical equality or identity case.
Thus, we have :                      
                              branch1              branch2
                                   |                       |
           t 3.1 = H1 + 1L + H1 + 1L H1 + 1L + H1 + 1L= t 3.2    

and t 3.1 =SEM t 3.2, hence the final result is t3 = H1 + 1L + H1 + 1L.

Hence, for equality of terms we get: t3.1=SYNT t3.2.

Article Title  7



Obviously this says that both branches are terminal and that both terminal results of the 
branches are semantically equal, therefore the branches are meeting in a common end. 
This corresponds to the graphematical equality or identity case.
Thus, we have :                      
                              branch1              branch2
                                   |                       |
           t 3.1 = H1 + 1L + H1 + 1L H1 + 1L + H1 + 1L= t 3.2    

and t 3.1 =SEM t 3.2, hence the final result is t3 = H1 + 1L + H1 + 1L.

Hence, for equality of terms we get: t3.1=SYNT t3.2.

Again, this result is supposing a common arithmetic of the example, given by the term t0.  

But what happens if we allow a game where arithmetics might be colored, and thus the 
results might still be syntactically equivalent but semantically different, because, say, 
blue is not green. Or if the number systems are running differently. This situation could 
result into a kenogrammatical calculus if we accept that the difference is not just in color 
but in the syntactical terms with results t3.1 = (1 + 1) + (1 + 1) and t3.2 = (2 + 2) +(2 + 2).

Hence, for equivalence of terms we get: t3.1 ≠SEM t3.2 but t3.1 =KENO t3.2.

More interesting deviations happens with the case when the terms differ in the number of 
sub-terms too. 
Say, if we get a result with different operators “+" and “x”.
t3.1 = (1 + 1) + (1 + 1) and t3.2 = (2 x 2) +(2 x 2).

In this case, there is no equality (identity) or kenogrammatical equivalence but similarity. 
Both terms are similar in their abstract structure which conserves the complexity of the 
terms, i.e. the length of the formula.

Hence, similarity of terms we get: t3.1 ≠SEM t3.2, t3.1 ≠KENO t3.2, but t3.1 =SIM t3.2.

Also similar terms are still of the same length, the number of their elements might differ. 
Only the metamorphic abstraction over terms is introducing a bisimilarity between terms 
of different complexity and therefore different length of the involved terms.
Bisimilarity happens if we get structurally different answers from the ‘same’ constellation 
t0.

Say, t0= (lx.x + x)(ly.y +y)1) delivers the answers t3.1 = (1 + 1) + (1 + 1) and t3.2 = (2 x 2) 

+ (2 x 2) x (1 +1).

Hence, for bisimilarity of terms we get: t3.1 ≠SEM t3.2, t3.1 ≠KENO t3.2, t3.1 ≠SIM t3.2 

but  t3.1 =BIS t3.2.

All cases, equality, equivalence, similarity and bisimilarity are still accepting the main 
scheme of term the development, here the branching of t0 into t1 and t2terminating in 

t3. Therefore, there is not yet any retrograde redefinition of the scheme involved during 

the term development.
This retrograde redefinition is attempted with interactional and interventional metamor-
phosis of general polycontextural formal systems. •    
Example- II

JbrN : subst : Jl v tN s t BvísF ID

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlw.wwN JuuN Jlv.vvN u JJlv.vvN uN : JbrN, Ja1N; JbrN : t 1, t 2

8   Author Name



u u JJlv.vvN uN : JbrN, Ja2N : t 2

é ã

uu JuuN : JbrN; Ja1N, JbrN : t 1 = t 2.

“In these computations, the final values are syntactically equal, so we know that they 
are semantically equal. This is interesting in light of the fact that in the first computa-
tion the top-level function was applied to the value of its arguments, while the second 
computation, it was applied to the syntactic expressions defining its arguments!” 
(Starck, p. 203)

2.2. Lambda Calculus modus=KENO

Equivalence
u eq v :

w 1 u MG w 2 v, w 3 u SEM w 4 v,
uw 1 MG vw 2, uw 3 SEM vw 4,

w i œ C EQ, i = 1, ..., 4 :
w 1 ≠ sem w 2, w 1 = MG w 2,
w 3 ≠ sem w 4, w 3 = MG w 4,
w 1 = sem w 3, w 1 = MG w 3,
w 2 = sem w 4, w 2 = MG w 4.

Example - II

Terms = :u, v, w, x, y, z>

Jbr kenoN : Jl v tN s t Bv í sF keno

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN x JJlv.vvN xN Jlw.wwN JuuN : Jbr u-xN, Ja1N; Jbr u-uN : t 1, t 2

xx JJlv.vvN xN : Jbr x-xN, Ja2N : t 1

é

xx JxxN = KENO uu JuuN : Jbr x-xN; Ja1N, Jbr u-uN

: t 1 ≠ SEM t 2, t 1 = keno t 2.

Null
Example - III

Article Title  9



Example - III

Terms = :u, v, w, x, y, z>

subst : Jl v tN s t Bv í sF keno

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN x JJlv.vvN xN

Jlv.vvN z JJlv.vvN zN
,

Jlw.wwN JuuN

Jlw.wwN JyyN

:

Jbr u-xN, Ja1N; Jbr u-uN : t 1, t 2

Jbr u-zN, Ja1N; Jbr u-yN : t' 1 , t' 2

xx JJlv.vvN xN

zz JJlv.vvN zN

é ã

xx JxxN

zz JzzN
,

uu JuuN

yy JyyN
: t 1 ≠ ID t 2, t 1 = keno t 2

Further examples

Example1

Jlx.x + xN Jly.y + yN aN : t 0

ã é

Jlx.x + xN Ja + aN, JJly.y + yN bN + JJly.y + yN bN : ' b 'ít 2 Jbr, a1N; ' a 'ít 1 JbrN

Jb + bN + JJly.y + yN bN : ' b 'ít 2 Jbr, a2N

é ã

Ja + aN + Ja + aN, Jb + bN + Jb + bN : ' a 'ít 1 JbrN; ' b 'ít 2 Ja1, brN

Null
Example1 + accr + BIF

Jlx.x + xN Jly.y + yN aN : t 0

ã é

, ,

10   Author Name



ã é

Jlx.x + xN Ja + aN, JJly.y + aN aN + JJly.y + bN bN : t 1, t 2

Jlx.x + xN Ja + aN 1.1

ˇ1.2

Jlx.x + xN J b + bN 1.2

,

Jly.y + yN aN + JJly.y + yN aN 2.1

ˇ1.2

JJly.y + yN bN + JJly.y + yN bN 2.2

˝

Ja + aN + JJly.y + yN aN 2.1

ˇ1.2

Jb + bN + JJly.y + yN bN 2.2

é ã

JJa + aN + Ja + aNN 1.1

ˇ1.2

JJ b + bN + Jb + bNN 1.2

,

JJa + aN + Ja + aNN 2.1

ˇ1.2

JJb + bN + Jb + bNN 2.2

: t 1= KENO t 2

Counter - Example3 :

Jlx.x + xN Jly.y + yN aN : t 0

ã é

Jlx.x + xN Ja + aN Jlx.x + xN Jb + bN, JJly.y + aN aN + JJly.y + bN bN : t 1, t 2

é ã

JJa + aN + Ja + aN Jb + bN + Jb + bNN, JJa + aN + Jb + bN Ja + bN + Jb + cNN : ≠ Ja1N t 2

JJa + aN Jb + bNN, JJa + aN Jb + bN, Jb + bN Jb + cN N : t 1 ≠ KENO t 2.

2.3. Lambda Calculus modus=similarity
Substitutions had been quite harmonious for the identity (equality) and the equivalence 
case.
Substitution in the mode of identity which is the case for classical lambda calculi is a 
prototype of a transformation or rewriting system whithout any deviation from identity.
Kenomic substitutions happens in the mode of equivalence, in contrast to the equality of 
identity, enabled by the kenomic abstraction or the Stirling Turn.
Nevertheless, both abstractions are balanced in respect of the number of occurrence of 
their terms.
This presumption is abandoned with the abstraction of similarity. Also similar terms are 
still of the same length, the number of their elements might differ.
Only the metamorphic abstraction over terms is introducing a bisimilarity between terms 
of different numbers of elements and different length of the involved terms.

Article Title  11



Similarity

Ju SIMvN
w 1u SIMw 2v

uw 3 SIMvw 4

wuŸ SEMwv, uwŸ SEMvw
w œ C SIM :
w 1≠ semw 2, w 1= MGw 2

w 3≠ semw 4, w 3= MGw 4

w 1≠ semw 3, w 1= MGw 3

w 2≠ semw 4, w 2= MGw 4

Null

Table u fl
SIM

 v 

B

u fi
SIM

v wx xw w 12 w 34 w 13 w 24

MG + + + + + +
SEM - - - - - -
[ + + . . . .

F

Example: u fl
SIM

 v

u = [aab], v = [bba]
u flMG v, u ¬flSEMv
w1 = @cc], w2 = [dd] : w 1 ≠ sem w 2, w 1 = MG w 2

w3 = @ee], w4 = [ff] : w 3 ≠ sem w 4, w 3 = MG w 4

wi œSIM, i=1,2,3,4

length(w1) = length(w2)
w 1 ≠ sem w 2

sem(wi) [ sem(u)= ø, i = 1,2

length(w3) = length(w4)
w 3 ≠ sem w 4

sem(wi) [ sem(v)= ø, i = 3,4

length(w1) = length(w3)
w 1 ≠ sem w 3

sem(wi) [ sem(v)= ø, i = 1, 3

length(w2) = length(w4)
w 2 ≠ sem w 4

sem(wi) [ sem(v)= ø, i = 2, 4

12   Author Name



B

u fi
SIM

v wx xw w 12 w 34 w 13 w 24

MG + + + + + +
SEM - - - - - -
[ + + . . . .

F

Example: u fl
SIM

 v

u = [aab], v = [bba]
u flMG v, u ¬flSEMv
w1 = @cc], w2 = [dd] : w 1 ≠ sem w 2, w 1 = MG w 2

w3 = @ee], w4 = [ff] : w 3 ≠ sem w 4, w 3 = MG w 4

wi œSIM, i=1,2,3,4

length(w1) = length(w2)
w 1 ≠ sem w 2

sem(wi) [ sem(u)= ø, i = 1,2

length(w3) = length(w4)
w 3 ≠ sem w 4

sem(wi) [ sem(v)= ø, i = 3,4

length(w1) = length(w3)
w 1 ≠ sem w 3

sem(wi) [ sem(v)= ø, i = 1, 3

length(w2) = length(w4)
w 2 ≠ sem w 4

sem(wi) [ sem(v)= ø, i = 2, 4

BaabF
SIM

BbbaF

BaabFBccF
SIM

BbbaFBddF, BeeFBaabF
SIM

BffFBbbaF

Example I - SIM

Terms = :u, v, w, x, y, z>

br SIMN : Jl v tN s t BvísF SIM

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN x JJlv.vvN xN Jlw.wwN JuuN : Jbr u-xN, Ja1N; Jbr u-uN : t 1, t 2

xx JJlv.vvN xN : Jbr x-xN, Ja2N : t 1

é

xx JyyN = SIM uu JuuN : Jbr x-yN; Ja1N, Jbr u-uN

: t 1 ≠ SEM t 2, t 1 ≠ keno t 2,
: t 1 = SIM t 2, .

Example II - SIM

Terms = :u, v, w, x, y, z>

subst : Jl v tN s t BvísF SIM

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN y JJlv.vvN xN Jlw.wwN JuuN : Jbr u-y, xN, Ja1N; Jbr u-uN : t 1, t 2

yy JJlv.vvN xN : Jbr y-yN, Ja2N : t 1

é

yy JxxN = SIM uu JuuN : Jbr x-yN; Ja1N, Jbr u-uN

: t 1 ≠ SEM t 2, t 1 ≠ keno t 2,
: t 1 = SIM t 2, .

Example III - SIM

Terms = :u, v, w, x, y, z>

Article Title  13



subst : Jl v tN s t BvísF SIM

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN y JJlv.vvN xN Jlw.wwN JuuN : Jbr u-y,u- xN, Ja1N; Jbr v-uN : t 1, t 2

yy JJlv.vvN xN : Jbr v-yN, Ja2N : t 1

é

yy JxxN = SIM zz JuuN : Jbr v-xN; Ja1N, Jbr w-zN

: t 1 ≠ SEM t 2, t 1 ≠ keno t 2,
: t 1 = SIM t 2, .

2.4. Lambda Calculus modus=bisimilarity
2.4.1. First steps to LC-bisimilarity

Table : u
BIS

v

B

u
BIS

v wx xw w 12 w 34 w 13 w 24

MG - - - - + +

SEM - - - - - -

[ + + . . . .
length - - - - + +

F

Conditions : u
BIS

v

wuŸ SEMwv, uwŸ SEMvw
w œ C BIS :
w 1≠ semw 2, w 1≠ MGw 2

w 3≠ semw 4, w 3≠ MGw 4

w 1≠ semw 3, w 1= MGw 3

w 2≠ semw 4, w 2= MGw 4

Bisimilarity
w 1

BIS
w 2 iff

$ w 1 , w 2 : Jw 1 w 2N œ JDec, Vk, Vs, EVk, EVsN

length Jw 1N ≠ length Jw 2N :

$ Jx 1, x 2N : EVk JBw 1FN = Jx 1, x 2N

$ Jy 1, y 2N : EVs JBw 2FN = Jy 1, y 2N,

14   Author Name



$ Jy 1, y 2N : EVs JBw 2FN = Jy 1, y 2N,

IF
Vs Jx 1, x 2N = Bw 2F

Vk Jy 1, y 2N = Bw 1F
THEN w 1

BIS
w 2 .

Bisimilarity

Vs JEVk Jw 1N N = BIS Vk JEVs Jw 2NN

Example
u

BIS
v, w 1, w 2

For
length Jw 1N≠ length Jw 2N

and
EVk JBw 1FN= JBabF, BabFN

EVs JBw 2FN= JBabF, BabFN

and
Vs JBabF, BabFN= Bw 2F

Vk JBabF, BabFN= Bw 1F
then Vs JEVk Jw 1N N = Vk JEVs Jw 2NN

w 1 u
BIS

w 2 v

Example - BIS

Terms = :u, v, w, x, y, z>

br BISN : Jl v tN s t BvísF BIS

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvvN y JJlv.vvvN xN Jlw.wwN JuuN : Jbr, xx = BIS vvvN, Ja1N; Jbr v-uN

: ,

Article Title  15



yyy JJlv.vvvN xN : JbrN, Ja2N : t 1

é

yyy JxxxN = BIS uu JuuN : Jbr v-xN; Ja1N, Jbr w-uN

: t 1 = BIS t 2, .

http://memristors.memristics.com/semi-Thue/Notes%20on%20semi-Thue%20systems.pdf 

2.4.2. Linguistic example for LC-bisimilarity
A simple application  “Fruit flies like a banana.”
What’s the meaning of an ambiguous sentence like “Fruit flies like a 
banana.”?

As it is well known, the sentence has, at least, two meanings:
1. “The insects called fruit flies are positively disposed towards bananas.”
2. “Something called fruit is capable of the same type of trajectory as a 
banana.”
"These two potential meanings are partly based on the (at least) two ways 
in which the phrase can be parsed.” (Alan P. Parkes, Introduction to Lan-
guages, Machines and Logic, 2002, p. 42)

Ambiguity in languages is reflected in the existence of more than one 
parse tree for one sentence of that language.

 Fruit flies like a banana.                  Fruit flies like a banana.
               áä                                                á       ä
  Fruit flies    like a banana                      Fruit flies   like a banana
                     áä                                    áä                   áä             
                 like  a banana                   Fruit   flies           like  a banana

                                                        
                                                     Fruit flies like a banana.
Fruit flies like a banana.                              âà a-banana
           âà a banana                                âà like
         âà like                                      âàflies
Fruit-flies                                         Fruit

Compositionality
The sentence X = "Fruit flies like a banana.” is de/composable into two 
different term-trees.
X' = (x1, x2, x3) and X” = (x1, x2, x3, x4) with

X’ =  like(banana, fruit-flies), length(X’) = 3
X” = flies((like, banana), fruit), length(X") = 4.

Because the meaning of the two sentences is not decomposable into the 
same amount of sub-terms, the relation between the two interpretations 
of the full sentence is neither equal, equivalent or similar, therefore, the 
concept of polysemy is not properly applicable. The 2 interpretations are 
also not in an asymmetric meaning relation of one-many-mappings.

The ‘ambiguous’ meaning of the sentence X ‘as such’ is therefore under-
standable as a bisimilar interplay between its two different realizations X’ 
and X”. The morphogram of X, i.e. its deep-structural meaning prior to any 
phonological interpretation is thus the morphogram of the whole situation 
MG = (X, X’, X"). 

It is a reasonable option to interpret this linguistic example which is an 
overlapping of two sentences of different structural ‘length’ with the tech-
niques of morphogrammatic bisimilarity. With such an interpretation the 
former interpretation with the help of morphogrammatic bifunctoriality 
based on fusion gets a further and technically more unifying treatment.

Morphogrammatic interpretation based of “fusion” and concatenation.

16   Author Name

http://memristors.memristics.com/semi-Thue/Notes%20on%20semi-Thue%20systems.pdf


Because the meaning of the two sentences is not decomposable into the 
same amount of sub-terms, the relation between the two interpretations 
of the full sentence is neither equal, equivalent or similar, therefore, the 
concept of polysemy is not properly applicable. The 2 interpretations are 
also not in an asymmetric meaning relation of one-many-mappings.

The ‘ambiguous’ meaning of the sentence X ‘as such’ is therefore under-
standable as a bisimilar interplay between its two different realizations X’ 
and X”. The morphogram of X, i.e. its deep-structural meaning prior to any 
phonological interpretation is thus the morphogram of the whole situation 
MG = (X, X’, X"). 

It is a reasonable option to interpret this linguistic example which is an 
overlapping of two sentences of different structural ‘length’ with the tech-
niques of morphogrammatic bisimilarity. With such an interpretation the 
former interpretation with the help of morphogrammatic bifunctoriality 
based on fusion gets a further and technically more unifying treatment.

Morphogrammatic interpretation based of “fusion” and concatenation.

BJabN, Jc, dNF ˇ BJa, bN, Jc, dNF ˇ BZab^, Jc, dNF

ã é ã é é

JabN Jc, dN Ja, bN Jc, dN J< a>, <b>N Jc, dN

ã é ã é ã é ã é ã é

c d a b c d < a> <b> < c > d

http://memristors.memristics.com/Memristics%20LISPs/Memristics%20LISPs.html 
Bisimilarity approximation model

Terms = :u, v, w, x, y, z>

subst : Jl v tN s t BvísF BIS

Jlw.wwN JJlv.vvN uN : t 0 = " Fruit flies like a banana. "

ã é

Jlv.vvvN y JJlv.vvvN xN Jlw.wwN JuuN : Jbr, xx= BIS vvvN, Ja1N; Jbr v-uN

t 1 = " Fruit flies like a banana. ",

t 2 = " Fruit- flies like a banana. "

yyy : ,

Article Title  17

http://memristors.memristics.com/Memristics%20LISPs/Memristics%20LISPs.html


yyy JJlv.vvvN xN : JbrN, Ja2N : t 1

é

yyy JxxxN = BIS uu JuuN : Jbr v-xN; Ja1N, Jbr w-uN

: t 1 = BIS t 2.

" Fruit flies like a banana." = BIS " Fruit-flies like a banana. "

X as t 0 is the bisimilar interplay
between t 1 and t 2 as X' and X " as answers to t 0.

3. Types of iterability

3.1. Identity
"For instance, if f = lx.x is the identity function, then we have f(x) = x 
for any x. 
In particular, we can take x = f , and we get 
f(f) = (lx.x)(f) = f . 
Note that the equation f(f) = f never makes sense in ordinary mathemat-
ics, since it is not possible (for set-theoretic reasons) for a function to 
be included in its own domain.” (Selinger, p. 7)
http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf

The trick to produce circularity is simple, well accepted and has lost any 
strangeness:
"In particular, we can take x = f, and we get f(f) = (lx.x)(f) = f.”

But it is guided by logical decisions and not by the means of the lambda 
calculus per se.  
What holds in general, holds in particular too. But all that belongs to inno-
cent hierarchical systems of total governance.

From a quadralectic point of view such naivety is not worth to be followed. 
Identity, especially in the disguise as beginnings, archai, are not unified by 
a simple umbrella of identity as it appears with the formula “f = lx.x” and 
its consequences.

3.2. Terminal terms
"For example, the lambda term (lx.y)((lz .z z )(lw.w)) can be reduced as 
follows. 
Here, we underline each redex just before reducing it: 

(lx.y)((lz .z z )(lw.w) ) Øb (lx.y)((lw.w)(lw.w)) 

                                   Øb (lx.y)(lw.w) 

                                   Øb y. 

The last term, y, has no redexes and is thus in normal form. We could 
reduce the 
same term differently, by choosing the redexes in a different order: 

    (lx.y)((lz .z z )(lw.w)) Øb y. 

18   Author Name

http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf


"For example, the lambda term (lx.y)((lz .z z )(lw.w)) can be reduced as 
follows. 
Here, we underline each redex just before reducing it: 

(lx.y)((lz .z z )(lw.w) ) Øb (lx.y)((lw.w)(lw.w)) 

                                   Øb (lx.y)(lw.w) 

                                   Øb y. 

The last term, y, has no redexes and is thus in normal form. We could 
reduce the 
same term differently, by choosing the redexes in a different order: 

    (lx.y)((lz .z z )(lw.w)) Øb y. 

"This example also shows that the size of a lambda term need not 
decrease during reduction it can increase,or remain the same.” 
(Selinger)

3.3. Non-terminal terms
Not every term evaluates to something; some terms can be reduced for-
ever without reaching a normal form.The following is an example:

Jlx.xxN Jlx.xxN :

Jlx.xxN Jlx.xxN b Jlx.xxN Jlx.xxN Jlx.xxN

b Jlx.xxN Jlx.xxN Jlx.xxN Jlx.xxN Jlx.xxN.

b. . .

In fact, most terms don' t terminate.

3.4. Chiastic terms
Two infinite developments with a finite inter-relation between the 2 loops 
are called chiastic terms. Chiastic terms are a new kind of terminal,i.e.fi-
nite,interactions between non-terminal terms. Chiasms themselves might 
have non-terminal developments too.
Chiastic terms belong to a class of new term configurations and are moti-
vated by polycontextural considerations.

Jlx.xxN Jlx.xxN b keno Jlx.xxN JJlx.xxN Jlx.xxN Jly.yyN Jly.yyNN :

Article Title  19



Jlx.xxN Jlx.xxN b keno

Jlx.xxN Jlx.xxN ...

Ì

Jly.yyN Jly.yyN ...

Ì

Jlz.zzN Jlz.zzN ...

:

4. From Y to WHY

4.1. Transitions to morphogrammatic fixed-points
Identity:  F =ID F'

Y ª (lf. (lx.f(xx)) (lx. f(xx)))
YF ª (lf. (lx.f(xx)) (lx. f(xx)))F
fl  (lx. F'(xx)) (lx. F(xx))
fl  F(lx. F'(xx)) (lx. F(xx))
fl  F'(YF) = F(YF).                 

Equivalence:  F ≠ID F’, F =keno F'

Y ª (lf. (lx.f(xx)) (lx. f(xx)))
YF ª (lf. (lx.f(xx)) (lx. f(xx)))F
fl  (lx. F'(xx)) (lx. F(xx))
fl  F(lx. F'(xx)) (lx. F(xx))
fl  F'(YF).                          

Some motivation
If the meaning of a term is defined by its use (Wittgenstein)then we should 
analyze the use of all crucial terms in the construction of the FixedPoint 
theorem.

Because this theorem is of crucial importance for formal systems in gen-
eral and for questions of computability in particular it shouldn't be exagger-
ated to test all the cases of the use of the main terms involved.

With Barendregt’s formula for the construction of the Fixed Point Theo-
rem, the term “W” is used 6 times and therefore we have to check all its 
possible ways of use. The comfortable excuse to use the distinction of a 
syntactic and a semantic or of an object- and meta-language use of the 
terms to avoid further analysis isn’t of leading importance in this case.

There are certainly better arguments to motivate the decision for a mor-
phogrammatic turn towards a new understanding of the use of signs. For 
the purpose of a simplified introduction of the techniques of morphogram-
matics it should suffice the desire for justification.

20   Author Name



Some motivation
If the meaning of a term is defined by its use (Wittgenstein)then we should 
analyze the use of all crucial terms in the construction of the FixedPoint 
theorem.

Because this theorem is of crucial importance for formal systems in gen-
eral and for questions of computability in particular it shouldn't be exagger-
ated to test all the cases of the use of the main terms involved.

With Barendregt’s formula for the construction of the Fixed Point Theo-
rem, the term “W” is used 6 times and therefore we have to check all its 
possible ways of use. The comfortable excuse to use the distinction of a 
syntactic and a semantic or of an object- and meta-language use of the 
terms to avoid further analysis isn’t of leading importance in this case.

There are certainly better arguments to motivate the decision for a mor-
phogrammatic turn towards a new understanding of the use of signs. For 
the purpose of a simplified introduction of the techniques of morphogram-
matics it should suffice the desire for justification.

From Y functor to WHY interaction
A similar constellation appeared in "Lambda Calculi in..." with the model-
ing of a 3-contextural Y and WHY function.

Chiasm of operator and operand
"In YF, the term Y is an operator and F is an operand of the application YF. 
Because of the highly abstract definition of the Lambda Calculus it is possi-
ble to change the operand, step by step, to an operator.
Now, F is an operator to (YF) and also an operand to Y in (YF). This double-
functionality of Y is saved in the mind of the reader, the difference is 
nullified by notional abstraction.
Polycontextural strategy tries, in contrast and additionally, to inscribe 
such a notational abstraction into a graphematic play. Because there is no 
trust in mental representations we have to write it down.” (polyLC, p. 63)

4.2. Morphogrammatic Fixed Point scheme
4.2.1. Barendregtʼs  Fixed Point 

The ingenious construction of the FixedPoint Theorem is given by Baren-
dregt’s formula. It is a simplified definition of the Turing operator “by 
recognizing that we don’t need to delay the evaluation of the first expres-
sion”.
The following analysis of the Fixed Point Theorem is not considering the 
computational aspects of “eager”  and “lazy” programming.

Article Title  21



The ingenious construction of the FixedPoint Theorem is given by Baren-
dregt’s formula. It is a simplified definition of the Turing operator “by 
recognizing that we don’t need to delay the evaluation of the first expres-
sion”.
The following analysis of the Fixed Point Theorem is not considering the 
computational aspects of “eager”  and “lazy” programming.

Proof of the theorem by Baren-
dregt:

Barendregt' proof

" F $X FX = X.
Y ª Hlf. Hlx.f HxxLL Hlx.f HxxLLL such that
" F F HYFL = YF.

Define W ª lx. F HxxL and X ª WW.
Then
X ª WW ª lx. F HxxLW ª F HWWL ª FX.

To analyze this “lazy” construction of the Y combinator we have to con-
sider all occurrences of the main term “W”. Hence, we count 6 different 
uses of the term W. Therefore we offer each use of the term W a number: 

Wi, with  iœ{1, ...,6}.

Thus, the full scheme of the Fixedpoint theorem is now marked by its 
numbers of occurrence of term “W”  in the application.

Fixed-point scheme

Define W 1ª lx. F HxxL and X ª W 2W 3.
Then
X ª W 2W 3 ª lx. F HxxLW 4 ª F IW 5W 6M ª FX.

There is in fact also a difference of use in “define X ª WW”, W2W3, and 

the logical application “Then X ª W”, W2W3. This difference is not spe-
cially marked in this discussion.

Fixed Point scheme for W

W1ª lx. F(xx),  X ª W2W3,  lx. F(xx)W4,  F(W5W6).

Eager Fixed Point Combinator (Selinger)

"The lambda calculus contrasts with arithmetic in that every lambda 
term has a fixpoint. This is perhaps the first surprising fact about the 
lambda calculus we learn in this course.”

"Theorem 3.1. In the untyped lambda calculus, every term F has a 
fixpoint.

Proof. Let A = lxy.y(xxy), and define Q = AA. Now suppose F is any 
lambda term, and let     N = Q F. We claim that N is a fixpoint of F. This 
is shown by the following calculation:
 
  N = Q F
      = AAF
      = (lxy.y(xxy))AF
      öb  F(AAF)      : (b )( lx.M)N  öb M[N/x] 

      = F(QF)
      = FN.
 
The term Q used in the proof is called Turing’s fixpoint combinator.” 
(Selinger)

22   Author Name



"The lambda calculus contrasts with arithmetic in that every lambda 
term has a fixpoint. This is perhaps the first surprising fact about the 
lambda calculus we learn in this course.”

"Theorem 3.1. In the untyped lambda calculus, every term F has a 
fixpoint.

Proof. Let A = lxy.y(xxy), and define Q = AA. Now suppose F is any 
lambda term, and let     N = Q F. We claim that N is a fixpoint of F. This 
is shown by the following calculation:
 
  N = Q F
      = AAF
      = (lxy.y(xxy))AF
      öb  F(AAF)      : (b )( lx.M)N  öb M[N/x] 

      = F(QF)
      = FN.
 
The term Q used in the proof is called Turing’s fixpoint combinator.” 
(Selinger)

Analysis
 A = lxy.y(xxy), Q = AA,
 N = Q F = AAF = (lxy.y(xxy))AF öb  F(AAF) = F(QF) = FN.

A1 = lxy.y(xxy), Q = A2A3,

N = Q F = A4A5F = (lxy.y(xxy))A6F öb  F(A7A8F) = F(QF) = FN.

4.2.2. Distributed Fixed points
Eager Fixed Point combinator in Scheme

(define Y 
  (lambda (f) 
    ((lambda (x) (f (lambda (y) ((x x) y))) 
      (lambda (x) (f (lambda (y) ((x x) y))))))).

Recursive FACT with Y:
(define fact 
  (Y (lambda (f) 
        (lambda (n) 
          (if (zero? n) 1 (* n (f (- n 1)))))))).

YH3L-KENO

(define YH3L 
  (lambda (f) 
    ((lambda (x) (f (lambda (y) ((x x) y)))
       (lambda (x) (f (lambda (y) ((x x) y)) 
         (lambda (x) (f (lambda (y) ((x x) y))))))).

Article Title  23



YH3L-KENO

(define YH3L 
  (lambda (f) 
    ((lambda (x) (f (lambda (y) ((x x) y)))
       (lambda (x) (f (lambda (y) ((x x) y)) 
         (lambda (x) (f (lambda (y) ((x x) y))))))).

Heterarchic distribution of Y J3N

Y J1.2 .3N ª Blf J1.2 .3N
F.

JJlx.f 1 JxxNN

Ì

Jlx.f 2 JxxNNN

Ì

Jlx.f 3 JxxNN

Heterarchy of Y J3N

Y J1.2 .3N ª lf J1.2 .3N.

Jlx.f 1 JxxNN Jlx.f 1 JxxNNN

ˇ

Jlx.f 2 JxxNN Jlx.f 2 JxxNNN

ˇ

Jlx.f 3 JxxNN Jlx.f 3 JxxNNN

Null

Recursive 3-FACTwith Y J3N

lfact J1.2 .3N.

Y 1 JlJf 1N lJn 1N Jif Jzero? n 1N 1 H* n1 Jf1 J- n1 1NNN

ˇ

Y2 JlJf2N lJn2N Jif Jzero? n2N 1 H* n2 Jf2 J- n2 1NNN

ˇ

Y 3 JlJf 3N lJn 3N Jif Jzero? n 3N 1 H* n3 Jf3 J- n3 1NNN

24   Author Name



lfact J3N. Y J3N
Bl Kf J3N

O l Kn J3N
OF

Jif Jzero? n 1N 1 H* n1 Jf1 J- n1 1NNN

ˇ

Jif Jzero? n2N 1 H* n2 Jf2 J- n2 1NNN

ˇ

Jif Jzero? n 3N 1 H* n3 Jf3 J- n3 1NNN

.

4.3. Morphogrammatics of Fixed Point Theorems
4.3.1. Semiotic equality

Identity : [1,1,1,1,1,1]

The most obvious use of “W” is the use in the mode of identity: 

Thus, for all i, j Wi, Wj: Wi ª Wj, with i,jœ{1, ...,6}.

For all i, j Wi, Wj: Wi ª Wj, i,jœ{1, ...,6} 
fl 

X ª W1W1 ª lx. F(xx)W1 ª F(W1W1) ª FX. 

That is the classical case of identity:
X ª WW ª lx. F(xx)W ª F(WW) ª FX.
fl X ª FX.

Logical interpretation
X ª WW ª lx. non(xx)W ª non(WW) ª nonX.
fl X ª nonX.
{X , nonX}œContradiction.

4.3.2. Kenomic equivalence
The kenomic equivalence takes the Stirling turn. What counts in this case 
is not anymore the identity of the signs in consideration but the structure 
of their distribution. Also the complexity of distribution is minimal in this 
application of the fixedpoint construction there are nevertheless enough 
distinctions available to enable to differentiate between an identity and a 
kenogrammatic use of signs.

Example1: [1,1,1; 4,4,4]

W1ª W2 ª W3, W4 ª W5 ª W6

W1 ª lx. F(xx), X ª W1W1, lx. F(xx)W4 , F(W4W4):

W1 ª lx. F(xx)

X1 ª W1W1 @kenolx. F(xx)W4 ª F(W4W4) @keno FX4

fl X1 @keno FX4.

Article Title  25



Example1: [1,1,1; 4,4,4]

W1ª W2 ª W3, W4 ª W5 ª W6

W1 ª lx. F(xx), X ª W1W1, lx. F(xx)W4 , F(W4W4):

W1 ª lx. F(xx)

X1 ª W1W1 @kenolx. F(xx)W4 ª F(W4W4) @keno FX4

fl X1 @keno FX4.

Example 2: [1,1,1,4,1,1]

W1ª W2 ª W3 ª W5 ª W6, W4≠ W1

W1 ª lx. F(xx)

X1 ª W1W1 @kenolx. F(xx)W4 @keno F(W1W1) @keno FX1

fl X1 @keno FX1.

Example 2-par : B1, 1, 1, 1 ˛4, 1 ˛4, 1 ˛4F

W 1ªW 2ªW 3ªW 5ªW 6, W 4≠W 1

W 1 ªlx.F JxxN

X 1 ªW 1W 1 @ keno

lx. F JxxNW 1

lx. F JxxNW 4
@ keno

F JW 1W 1N

F JW 4W 4N
@ keno

FX 1

FX 4

X 1 @ keno
FX 1

FX 4
.

Example3: [1,1,1; 4; 5,5]

W1ª W2 ª W3, W4, W5 ª W6

W1 ª lx. F(xx)

X1 ª W1W1 @keno lx. F(xx)W4 @keno F(W5W5)@keno FX5

fl X1@keno FX5.

Logical interpretation

a) X1 ª W1W1 @keno lx. non(xx)W1 @keno non(W1W1)@keno nonX1

fl X1@keno non1X1 fl {X1, non1X1}œ Noncontradiction.

b) X1 ª W1W1 @keno lx. non(xx)W4 @keno non(W5W5)@keno nonX5

fl X1@keno non5X5.

fl {X1, non5X5}œIncompatible.

26   Author Name



Logical interpretation

a) X1 ª W1W1 @keno lx. non(xx)W1 @keno non(W1W1)@keno nonX1

fl X1@keno non1X1 fl {X1, non1X1}œ Noncontradiction.

b) X1 ª W1W1 @keno lx. non(xx)W4 @keno non(W5W5)@keno nonX5

fl X1@keno non5X5.

fl {X1, non5X5}œIncompatible.

4.3.3. Morphic similarity
While the kenogrammatic use in the case of equivalence is still accepting 
the symmetry of substitutions the case of morphic similarity is abandoning 
this restriction too. Hence, the necessity to replace the same term in a 
function like “f(xx)" is deliberated to the possibility to replace the repeti-
tion of “x” in “f(xx)" with different occurrences of the term “W”.

Example4: [1,1,1; 4; 5; 6]

W1ª W2ª W3, W4, W5, W6

W1 ª lx. F(xx)

X1 ª W1W1 @keno lx. F(xx)W4 @sim F(W5W6) @sim FX5.6

fl X1@sim FX5.6.

Example5: [1,2,3; 4; 2; 3]

W1, W2, W3, W4, W2, W3

W1 ª lx. F(xx)

X1 ª W2W3 @sim lx. F(xx)W4  @sim F(W2W3) @sim FX2.3.

fl X1 @sim FX2.3.

Logical interpretation

X1 ª W2W3 @sim lx. non(xx)W4  @sim non(W2W3) @sim nonX2.3.

fl {X1, non(X2|X3)}œIncompatible.

4.3.4. Morphic bisimilarity
Morphic bisimilarity abandons the security of the process of substitution 
established by the presumption in charge for the identity, the equivalence 
and the similarity option, of the same “length” of the substituted terms.

Hence, the situation “W1 ª lx. F(xx)" might be replaced by the bisimilar 

term “lx. F(xxx)" delivering not WW but WWW with the abstraction W1W1 @

bis W
5W6W 7.

Article Title  27



Morphic bisimilarity abandons the security of the process of substitution 
established by the presumption in charge for the identity, the equivalence 
and the similarity option, of the same “length” of the substituted terms.

Hence, the situation “W1 ª lx. F(xx)" might be replaced by the bisimilar 

term “lx. F(xxx)" delivering not WW but WWW with the abstraction W1W1 @

bis W
5W6W 7.

Example6: [1,1,1; 4; 5; 6; 7]

W1ª W2 ª W3, W4, W5, W6, W7

W1 ª lx. F(xx)

X1 ª W1W1 @bis lx. F(xxx)W4 @sim F(W5W6W 7) @sim FX5.6 .7

fl X1 @bis FX5.6 .7.

Example7: [1,2,3,3’; 4; 4; 5]

W1, W2, W3,W3,  W4, W2, W3

W1 ª lx. F(xxx)

X1 ª W2W3W 4 @bis lx. F(xx)W5  @sim F(W6W 7) @sim FX6.7.

fl X1 @bis FX6.7.

28   Author Name




